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WIND-TUNNEL INVESTIGATION OF LONGITUDINAL AERODYNAMIC 

CHARACTERISTICS OF A POWERED FOUR-DUCT-PROPELLER 

VTOL MODEL IN TRANSITION 

By Kenneth P. Spreemann 
Langley Research Center 

SUMMARY 

An investigation of the aerodynamic characteristics of a powered four-duct- 
propeller model of a VTOL airplane has been conducted in the 17-foot test sec- 
tion of the Langley 300-MPH 7- by 10-foot tunnel. 
an angle-of-attack and transition-speed range from hover to normal forward 
flight. 
speeds and power conditions. 

The model was tested through 

Duct deflection angles from -5O to 90' were investigated at appropriate 

The results showed that the first configuration tested was longitudinally 
unstable at high thrust coefficients in the cruise condition. Longitudinal sta- 
bility was achieved by diminishing the destabilizing effects of the front pair 
of ducts by reducing the size of the front fairings between the ducts and the 
fuselage. Duct lip stall, which was aggravated by the low Reynolds numbers Of 
the tests, was delayed to higher angles of attack by increasing the lower lip 
radius of the duct. Delaying the stall on the lower duct lip also helped to 
delay stalling on the upper duct surface. 
transition-speed range might best be attained by a combination of differential 
thrust and deflection of vanes within the ducts. 

Trim and control requirements in the 

INTRODUCTION 

An investigation to study the longitudinal aerodynamic and control charac- 
teristics of a four-duct-propeller VTOL transport airplane configuration has 
been conducted in the 17-foot test section of the Langley 3OO-MFH 7- by 10-foot 
tunnel by using a l/?-scale model. The four ducts were arranged in pairs at 
the front and rear of the model. This arrangement, as pointed out in refer- 
ence 1, provides good pitch and roll control in hovering and transition by 
means of differential thrust of the appropriate pairs of ducted propellers. In 
the transition-speed range this type of aircraft can experience longitudinal 
and lateral instability associated with flow into the ducts and interference 
between ducts. 

The present investigation was undertaken to study the longitudinal and 
lateral stability characteristics from hover through transition to normal for- 
ward flight. Included in the investigation were various types of modifications 
used in attempts to reduce some of the stability problems encountered, particu- 
larly in the low-transition-speed range. This paper will present only the lon- 
gitudinal characteristics and the effects of the appropriate modifications. 



COEFFICIENTS AND SYMBOLS 

The force and moment coefficients used in this paper are based on the 
dynamic pressure in the tunnel free stream. The positive sense of forces, 
moments, and angles is indicated in figure 1 for the complete model and in fig- 
ure 2 for the isolated duct-propeller assembly. Moments of the complete model 
are referred to the assumed center-of-gravity location indicated in figure 3 .  
Moments of the isolated duct-propeller assembly are referred to the individual 
propeller plane. 

Measurements for this investigation were taken in the U.S. Customary System 
of Units. 
national System (SI) in the interest of promoting use of this system in future 
NASA reports. 
stants and conversion factors, are given in reference 2. 

Equivalent values are indicated herein parenthetically in the Inter- 

Details concerning the use of SI, together with physical con- 
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propeller t h rus t  coeff ic ient  based on ro ta t iona l  speed of propeller, 
TD 

pn2D4 

l i f t  force of complete model, lb f  (N) 

drag force of complete model, l b f  (N)  

moment about Y-axis of complete model, f t - lb f  (m-N) 

l i f t  force of duct alone, l b f  (N) 

drag force of duct alone, Ibf (N) 

propeller normal force, l b f  (N)  

propeller pitching moment, f t - l b f  (m-N) 

moment of isolated duct with respect t o  duct reference axis,  
f t - l b  (m-N) 

free-stream dynamic pressure, 5 pf,  l b f / f t 2  (N/m2) 

mass density of a i r  i n  f r ee  stream, slugs/cu f t  (kg/m3) 

propeller diameter, 16.8 in .  (0.427 m) 

propeller shaf t  torque, f t - lb f  (m-N) 

wing span, in .  (m)  

l oca l  wing chord, in. (m) 

wing reference area, 9.0 sq f t  (0.835 m2) 

spanwise distance from plane of  symmetry, in. (m) 

th rus t ,  l b f  ( N )  

t o t a l  propeller th rus t ,  thrust  plus drag (propeller o f f )  a t  a = Oo, 
l b f  ( N )  

t h rus t  of each propeller,  lb f  (N) 

propeller ro ta t iona l  speed, rps or r p m  

model angle of a t tack  with respect t o  fuselage reference l i ne ,  deg 
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Subscripts: 

isolated-duct angle of attack, deg 

model p i tch  angle with respect t o  fuselage reference l i n e  i n  
hovering, deg 

duct deflection angle, deg 

vane o r  elevon deflection angle, deg 

horizontal-tail ,  o r  s tab i l izer ,  incidence angle, deg 

thickness of f ront  duct fa i r ing,  in .  (m) 

free-stream velocity, f t / sec  (m/sec) 

veloci ty  of ful l -scale  airplane, knots 

lift force of complete model a t  zero =le of attack i n  the hovering 
condition out of ground effects ,  1bf (N) 

height of model above ground board, f t  (m) 

F f ront  

R rear  

Model components: 

DF front  duct f a i r ing  between duct and fuselage 

H t  horizontal ta i l ,  or s t ab i l i ze r  

H t , l  horizontal ta i l ,  or  s tab i l izer ,  designated a s  number 1 (f ig .  6) 

ve r t i ca l  t a i l  vt 

MODEL AND APPARATUS 

A drawing of the basic model with pertinent dimensions i s  given i n  f ig-  
ure 3 .  The model w a s  mounted on a sting-supported six-component strain-gage 
balance for measurements of the complete model forces and moments. Thrust w a s  
provided by four ducted propellers - two forward mounted close inboard and two 
rearward mounted on a wing a t  the rear  of the  model. Also mounted on the rear  
wing were four nacelles simulating engine nacelles of a ful l -scale  airplane f o r  
powering the  four propellers through shafting and gearing. However, f o r  t h i s  
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tunnel model each propeller was powered by a separate e l ec t r i c  motor. The duct 
center bodies were, therefore, larger  than they would be on an actual airplane. 
The motors were mounted on strain-gage balances t o  measure the forces and 
moments of the propellers. 

The two right-hand motors w e r e  instrumented t o  measure normal force and 
pitching moment; t he  two left-hand motors were instrumented t o  measure side 
force and yawing moment. 
t o r s  attached so t h a t  the f ront  ducts could be rotated through an angle range 
independent of the  rear  ducts. The various horizontal s tabi l izers ,  control 
surfaces, and modifications used on the  model a re  shown i n  figures 4 to  8. 
wing incidence angle w a s  held constant a t  3 O  throughout the investigation. 

Each pa i r  of ducts was mounted on a shaft with actua- 

The 

TESTS AND CORRECTIONS 

The tests were conducted i n  the l7-foot t e s t  section of the Langley 
3OO-MPH 7- by 10-foot tunnel. 
section are given i n  the appendix of reference 3. 
model propeller speed were held constant throughout the angle-of-attack range 
f o r  a par t icu lar  run. 
ous thrus t  coefficients were obtained by varying the tunnel velocity from one 
run t o  the  next while maintaining a constant propeller speed. 
f i c i en t  CT w a s  based on the t o t a l  thrust % of the propellers, which was 
obtained by taking the difference between the longitudinal force with the pro- 
pe l l e r  operating and the longitudinal force with the propeller removed a t  zero 
angle of a t tack and zero duct deflection angle. The thrust coefficients of 
each propeller, CT,l and C T , ~ ,  were based on the measured thrust of each 
propeller a t  each angle of attack. 

The arrangement and calibration of t h i s  t e s t  
The tunnel velocity and the 

Except f o r  the few runs noted i n  the figures, the vari-  

, The thrus t  coef- 

Corrections t o  the  free-stream veloci ty  t o  account f o r  blockage were e s t i -  
mated by the method of reference 4, were found t o  be negligible, and thus were 
not applied. The jet boundary corrections were estimated by a method f o r  rec- 
tangular tunnels (ref. 5 )  and by a method for square wind tunnels. 
resul t ing corrections were applied t o  the cruise configuration data ( f igs .  10 
t o  17) a s  follows: 

The 

a = % + 0.322% 

where %> CD,m, and Cm,m a re  the  measured values i n  the tunnel. 

Because of the  uncertainty of appl icabi l i ty  of model corrections t o  a tan- 
dem configuration of t h i s  type a t  the  high-l i f t  coefficients encountered i n  
t ransi t ion,  no corrections w e r e  applied t o  the t rans i t ion  and duct-alone data 
( f igs .  18 t o  27). 
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The Reynolds numbers for the range of thrust coefficients used based on 
wing chord or duct chord and free-streamvelocity are given in the following 
table: 

9 

I lb/ft2 1 .8 

N /m2 

478.8 
478.8 
336 0 
168.0 
62.2 
20.2 
9.1 

Reynolds number based on - 

Wing chord 

9.8 x 105 
9.8 
8.16 
5=8 
3.5 
2.0 
1.34 

Duct chord 

4.8 x 105 
4.8 
4.0 
2.85 
1.72 
92 

.66 

PFU3SENTATION OF FU3SULTS 

The results of the investigation are presented in the following figures: 

Figure 

Hovering characteristics . . . . . . . . . . . . . . . . . . . . . . . .  
Cruise configuration characteristics . . . . . . . . . . . . . . . . . .  
Characteristics in transition: 
Duct stall characteristics . . . . . . . . . . . . . . . . . . . . . .  
Trim and stability in transition . . . . . . . . . . . . . . . . . . .  
Control effectiveness . . . . . . . . . . . . . . . . . . . . . . . .  
Large-vane effectiveness . . . . . . . . . . . . . . . . . . . . . . .  
Small-vane effectiveness . . . . . . . . . . . . . . . . . . . . . . .  
Large vane on and off . . . . . . . . . . . . . . . . . . . . . . . .  

Summary of duct lip stall . . . . . . . . . . . . . . . . . . . . . . .  
Summary of effects of thrust coefficients . . . . . . . . . . . . . . .  
Summary of control effectiveness . . . . . . . . . . . . . . . . . . . .  

Isolated-duct characteristics: 

9 
10-17 

18 
19-20 
21-24 

25 
26 
27 
28 
29 
30 

Flow patterns indicated by tuft studies at various thrust coefficients, 
duct deflection angles, and angles of attack are presented as parts of fig- 
ure 19. 
given only where significant changes in stall characteristics occurred. For 
some tests, propeller data were recorded and are presented as parts of the 
appropriate figures. For the sumnary figures 29 and 30, the model was treated 
as a 0.20-scale model of a 15 000-pound (66 720-newton) airplane. 

Combinations of duct deflection angles and model angle of attack are 
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DISCUSSION 

Hovering Characterist ics 

The hovering character is t ics  of the model within ground effect  
(h/D = 0.595) are given i n  figure 9 ,  which indicates appreciable changes i n  the 
center-of -pressure location, 

a s l igh t  favorable effect  of the ground on l i f t  near zero and nose-up at t i tudes.  

M y  /(FL),~D, with changes i n  angle of attack and 

Cruise Configuration Characterist ics 

The f irst  configuration tested,  indicated by the c i r c l e s  i n  f igure 10, w a s  
found t o  have very low longitudinal s t a b i l i t y  with power off, CT = 0, and 
became slightly unstable with power on, 
modifications were t r i e d  t o  a l lev ia te  t h i s  condition before the t rans i t ion  
studies were made. Increasing the s ize  of the outboard s t ab i l i ze r  helped, but 
greater increases i n  s t a b i l i t y  were obtained by reducing the  s i ze  of the front  
duct fa i r ings  or removing them entirely.  

CT = 0.8; consequently, a number of 

(See f igs .  10 and 11.) 

Since the smallest duct fairing (number 3 shown i n  f ig .  5 )  gave a more 
s table  configuration than the other fa i r ings t r ied ,  it was, therefore, used fo r  
the r e s t  of the investigation. 

The increased s t a b i l i t y  provided by the smallest f a i r ing  can be at t r ibuted 
t o  the reduction i n  l i f t  carry-over on the front ducts and fuselage caused by 
the fa i r ing  geometry. The e f fec ts  of s tab i l izer  incidence and the e f fec ts  of 
removing the s t ab i l i ze r  a re  shown i n  figure 12. 

A large improvement i n  l i nea r i ty  of the pitching-moment curves and i n  sta- 

Although 
b i l i t y  a t  re la t ive ly  high thrus t  coefficients was achieved by reducing the 
deflection of both the front  and rear  ducts 3° as shown i n  figure 13. 
duct deflection angles of Oo on the front  and -5' on the rear  give a good 
cruise configuration, it must be realized tha t  the a i r c r a f t  w i l l  have t o  pass 
through the higher duct angles while going through t ransi t ion.  

From figure 14, it i s  seen tha t  with power o f f ,  removing the propeller had 
Also, with suf- l i t t l e  e f fec t  on the aerodynamic character is t ics  of the model. 

f i c i en t  power t o  provide a zero drag condition a t  zero angle of attack, the 
longitudinal s t a b i l i t y  of the  model w a s  v i r tua l ly  the  sitme as with power off. 
Data f o r  t e s t s  showing the e f f ec t s  of various model components on the aerody- 
namic character is t ics  of the model a re  given i n  figure 15. 

In reference 6, it w a s  shown that rotat ing the  propeller against the t i p  
vortex resulted i n  a slight reduction i n  power required and pitching moment i n  
the t rans i t ion  speed range for an unshrouded propeller located a t  the wing tip. 
However, with the ducted fan  of t h i s  investigation, direct ion of propeller 
rotat ion had no ef fec t  on l i f t  (on which power required i s  a d i rec t  f'unction) 
and pitching moment ( f ig .  16). 
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A few tests with the engine nacelles removed indicate that the nacelles 
produced a slightly destabilizing contribution to the pitching moment at a 
thrust coefficient of 0.8 and that in general the effects of the nacelles were 
very small (fig. 17). 

Characteristics in Transition 

Duct stall characteristics.- W t  studies of the original configuration at 
a duct incidence of 13O and greater indicated separation of the flow from the 
duct lower lip at combinations of power and speed corresponding to steady level 
flight (Thrust = Drag). 
study reported in reference 7. In that investigation, separation occurred much 
earlier on the model than on the corresponding full-scale configuration. 
reference 7, it was found that nearly full-scale conditions could be simulated 
by increasing the lower lip radius of the duct. Consequently, a number of sim- 
ilar modifications were made in an effort to delay the lower duct lip separa- 
tion until higher angles of attack were reached. A sketch of the most effec- 
tive duct lip modification which was used throughout most of the investigation 
is shown in figure 4. 
are not presented in this paper. 

Similar separation problems were encountered in the 

In 

Data for the other duct lip modifications, therefore, 

The enlarged lower duct lip delayed stalling in the duct as shown by the 
power-off lift curves in figure 18(a) and power-on stall boundaries in fig- 
ure 28 (determined from tuft studies on the isolated duct). Moreover, with the 
enlarged lower duct lip, stalling in the duct was delayed to higher duct angles 
than stalling on the upper duct surface (fig. 28). Also, delaying flow separa- 
tion on the lower duct lip helped to delay the stall on the upper duct surface 
above thrust coefficients of 2.0. 

Increasing the lower lip radius altered the camber of the lower duct pro- 
file and resulted in a change in pitching-moment characteristics with power 
off (fig. 18(a)), as might be expected. However, with power on (fig. 18(b)), 
the effect is reduced, because some of the moment obtained is due to the flow 
being turned into the duct. With power on, the pitching moment is less 
affected by duct profile. 

Trim and stability in transition.- The transition characteristics are sum- 
marized in figure 29 where-the data from figures 19 and 20 have been used to 
calculate the-characteristics of a 15 000-pound (66 720-newton) airplane by 
assuming the model to be l/5 scale. In the lower transition speed range, 20 to 
50 knots, the data indicate that the airplane would be unstable and have large 
out-of-trim pitching moments. A similar analysis of the data from reference 8 
indicated that the four-duct-propeller configuration of that investigation 
would have almost twice the out-of-trim moment compared with that of the 
assumed airplane of this investigation. The lower nose-up moments of the pres- 
ent configuration are probably due to the cambered wing and 3 O  incidence com- 
pared with the symmetrical airfoil section and 0' wing incidence used on the 
configuration of reference 8. 

The maximum moments of the airplane of this investigation would require 
about f2000 pounds (28890 newtons) of differential thrust from front to rear 
8 



ducts t o  t rh.  
both di .fferentia1 thrust and vane control may be a b e t t e r  means of providing 
trim fo r  the airplane i n  t h i s  speed range. 

(See thrus t  required and moments i n  f ig .  30.) A combination of 

Control effectiveness.- Figures 2 1 t o  24 show the control effectiveness of 
the v & e s a h  the ducts a t  various thrust coefficients,  which correspond t o  
the range of very low t rans i t ion  speeds t o  ful l  forward flight speeds. The 
pitching-moment curves show that vane deflections of -loo t o  +loo provide suf- 
f i c i en t  control t o  trim the m o d e l  i n  the  higher t rans i t ion  speed range, where 
values of CT ranged from 0.40 t o  0.80. However, i n  t he  med ium and very low 
t rans i t ion  range, where values of CT were 2.1 and above and the higher duct 
deflection angles were required, vane deflection w a s  inadequate and thus dif- 
f e ren t i a l  thrust  between the  front  and rear  ducts i n  addition t o  vane control 
w i l l  be required (f igs .  21  t o  24). 

A s  previously mentioned, it was noted from t u f t  studies tha t  various par t s  
of the  ducts s t a l l ed  at d i f fe ren t  duct deflection angles. It w a s  also observed 
t h a t  the upper vane surface behind the upward rotation side of the propeller 
s ta l led  a t  about the same duct angles of a t tack as the duct upper surface, 
whereas the section behind the downward side was delayed 15' t o  20' higher due 
t o  t w i s t  i n  the  propeller slipstream. 
of course, would be detrimental t o  the  control effectiveness of these surfaces. 

Early s t a l l i ng  on par t  of the duct vanes, 

A wind-tunnel investigation of a powered four-duct-propeller model of a 
VTOL a i r c r a f t  indicated the following conclusions: 

1. The f irst  configuration tes ted  w a s  longitudinally unstable a t  high 
thrust  coefficients i n  the cruise condition with the center of gravity midway 
between the centers of rotat ion of the ducts. Longitudinal s t a b i l i t y  w a s  
achieved by diminishing the destabil izing e f fec ts  of the front  pa i r  of ducts. 
This w a s  accomplished by reducing the s ize  of the fa i r ings  between the ducts 
and the fuselage, and thus, the l i f t  carry-over t o  the fuselage was reduced. 
Reduction of duct incidence i n  the cruise configuration also great ly  imgroved 
the longitudinal s t ab i l i t y .  

2. Duct. l i p  stall,  which was aggravated by the low Reynolds nwbers of the 
tests, w a s  delayed t o  higher angles of attack by increasing the duct l i p  radius. 
Delaying the s ta l l  on the  lower duct l i p  a lso helped t o  delay stalling on the 
upper duct surface. 

3 .  The la rges t  nose-up moments i n  t rans i t ion  were encountered a t  a duct 
deflection angle of about 60° (approxima,tely 40 knots on a ful l -scale  airplane). 
A t  t h i s  condition, differential th rus t  between the front  and rear pa i r s  of 
ducts will be required t o  provide t r i m  and control. 
t i o n  and deflection of control surfaces within the ducts have very l i t t l e  

Dif fe ren t ia l  duct deflec- 
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effectiveness at high duct deflection angles and low speeds, but provide power- 
f'ul control at low duct deflection angles and high speeds. 
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1. Newsom, William A., Jr. : Aerodynamic Characteristics of Four-Duct Tandem 
VTOL-Aircraft Configurations. NASA TN D-1481, 1963. 

2. Mechtly, E. A.: The International System of  Units - Physical Constants and 
Conversion Factors. NASA SP-7012, 1964. 

3. Kuhn, Richard E.; and Hayes, William C., Jr.: Wind-Tunnel Investigation of 
Longitudinal Aerodynamic Characteristics of Three Propeller-Driven VTOL 
Configurations in the Transition Speed Range, Including Effects of Ground 
Proximity. NASA TN D-55, 1960. 

4. Herriot, John G.: Blockage Corrections for Three-Dimensional-Flow Closed- 
Throat Wind Tunnels, With Consideration of the Effect of Compressibility. 
NACA Rept . 995, 1950. ( Supersedes NACA RM ~7~28. ) 

5. Gillis, Clarence L.; Polhamus, Edward C.; and Gray, Joseph L., Jr.: Charts 
for Determining Jet-Boundary Corrections for Complete Models in 
10-Foot Closed Rectangular Wind Tunnels. NACA WR L-123, 1945. [izerly 
NACA ARR L5G31.) 

6. Spreemann, Kenneth I?.: Investigation of a Semispan Tilting-Propeller Con- 
figuration and afects of Ratio of Wing Chord to Propeller Diameter on 
Several Small-Chord Tilting-Wing Configurations at Transition Speeds. 
NASA TN D-1815, 1963. 

7. Goodson, Kenneth W.; and Grunwald, Kalman J.: Aerodynamic Characteristics 

NASA TN D-981, 1962. 
of a Powered Semispan Tilting-Shrouded-Propeller VTOL Model in Hovering 
and Transition Flight. 

8. Davenport, =win E.; and Spreemam, Kenneth P.: Transition Characteristics 
of a Aircraft Powered by Four Ducted Tandem Propellers. NASA 
Tm D-2254, 1964. 

10 



h 
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la) Hovering tests. 

Figure 1.- Conventions used to  define positive sense of forces, moments, and angles for the complete model. 



(b) Tunnel tests. 

Figure 1.- Concluded. 
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Figure 2-  Conventions used to define positive sense of forces, moments, and angles for the isolated duct wi th propeller. 
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Figure 3.- Drawing of complete model. Dimensions are given f i rst  i n  inches and parenthetically in  meters. 
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Figure 4.- Drawing of isolated duct with duct l ip modifications. Dimensions are given f i rst  in inches and parenthetically in meters. 
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Figure 5.- Details of fa i r ing between duct and fuselage. Dimensions are given f i rs t  i n  inches and parenthetically i n  meters. 
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